第二十八章 信息生命体(八) (第1/1页)

加入书签

6.非生命物理系统

到目前为止,我们主要讨论的都是生物学的例子,但为了进一步实现理解生物集群独有特征的目标,我们还必须理解所关心这些特性在非生命系统中出现在哪里。例如,有些非生命的、纯物理系统允许我们在没有生物组织的情况下研究可控性。引力体(Gravitating bodies)、范德瓦尔斯气体(Van der Waals gases)和自旋玻璃(spin glasses)都是潜在作为纯物理复杂系统的例子。不幸的是,这些系统中的绝大多数从未进行过任何形式的可控性分析,因为几乎没有控制它们的实际需求。耦合量子系统是个例外,由于量子计算的潜力人们对其可控性进行了严格的核查。

尽管对量子系统可控性的全面回顾超出了本文的范围,但值得指出一些与网络可控性相关比较突出的结果。最值得注意的是,许多耦合的量子系统只需通过操纵一个或两个量子比特就可以实现完全可控性,其作用类似于网络控制理论中的驱动节点。若通过使用某种形式的外部控制可以访问整个希尔伯特空间,那么一个量子系统就被称为是完全可控的(Schirmer et al. 2003)。

给定足够的外部控制量,任何系统都应该是完全可控的。例如如果可以控制一个系统每个单独的自旋,那么一个耦合的自旋-1/2粒子链将是在极其精细下完全可控的。更有趣是,为了完全控制系统,量子系统需要的最小外部控制是什么,这与Liu 等人(2011)等人在网络可控性方面提出的问题一样,答案也惊人的相似。具体来说,Burgarth 等人(2009)研究了一种通过各向同性海森堡型(isotropic Heisenberg-type)相互作用耦合在一起自旋为-1/2的粒子链的完全可控性条件,发现通过两个非对易(non-muting)的外部控制对链末端单个节点的状态,就足以对网络实现完全可控性。

类似地,在具有XY型相互作用的海森堡型自旋链中(Z自旋分量之间没有耦合),只需操纵单个位点及与邻近位点的相互作用就可以实现完全可控性(Schirmer et al. 2008;Kay & Pemberton-Ross 2010)。然而也并非所有自旋链系统都如此容易控制。例如,伊辛型(Ising-type)的相互作用需要对每个局部自旋进行控制才能实现完全可控(Wang et al. 2016)。事实

更多内容加载中...请稍候...

本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!

本章未完,请点击下一章继续阅读!若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!

↑返回顶部↑

上一章 书页/目录 下一章

其他类型相关阅读: 离婚后我成了豪门千金 网游:神级序列缔造者 缘起三生暖风倾雪 贵女天骄 齁甜!漂亮宿主被高冷影帝叼走了 坏心宿主玩脱,重新攻略崩坏男主 中奖三亿:醒醒!天上真的掉馅饼 疯了!开局一张嘴,修仙全靠毁 大小姐掉马后封神了 三国:开局黄巾渠帅,阵斩关羽 苟住性命,远离男主 【尸兄不死体吞噬万界】 命格被夺后,她被五个哥哥争着宠 原神:进入卡池后,开始原创剧情 我真的不是穿越者啊 全能管家是棒槌 表姑娘定亲后,清冷探花黑化了 逆天改命最强黄巾 四合院:我在80年代赚大钱 简单等于幸福